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Abstract

This paper develops optimal statistical estimation formulation for multi-
dither adaptive optics control loops which potentially can enhance stable beam
control performance in the presence of spurious signal like noise. A multi-
dither autofocus example is chosen to compare estimated assisted and conven-

tional adaptive optical performance in the presence of speckle generated noise. |

[. Introduction

Adaptive optics has truly become an important subficld. As the ideas in l
adaptive optics cross interdisciplinary lines of both the optics commmnity and

the control community (although perhaps not universally recognized), it is

imperative that new techniques from each commmity evolve to enhance the
pcrformance ot adaptive optical systems. This paper represents one of these
inderdisciplinary crossings in order to utilize experience and techniques from
the control community to enhance the field of adaptive optics.

Adaptive Optical systems are inherently closed loop systems whereby a
{eedback signal is used to detect system error in some manner. This error
detection is then used to control an adaptive optic in order to enhance overall
optical pe:formance. The inherent performance of closed loop control lies in its
ability to correct for a process that may not be as accurately determined as
one would 1like. However, the limitation of feedback control is that the feed-
back signals must be as precisely determined as the accuracy level required of
the controller [1]. Since in adaptive optics the signal may be corrupted by
several noise effects such as speckle, photon noise, and detector noise, it is
imperative to obtain a filtering of this noise in order to properly achicve the
potential system accuracy. Without fully realizing the usc of optimal tech-
niques, the optics commmity has actually benefited from a form of filtering
that is inherently present in existing adaptive optics servo hardwarc. The
inherent analog response of these servos to feedback signals yield a (iltering
of tne signal. However, the filtering is at best suboptimal as it does not
include the prior statistical knowledge of the phenomenon perturbing the feed-

back signal. Nor does it use anv of the available information in an optimal

sense.  The filtering is strictly a bandpass operation. @ ¥ B
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E | This paper develops the use of estimation techniques as well known in the

L ; control community [2,3,4] in order to obtain an optimum estimate of the feed- ‘
back signal for multidither adaptive optics (see [5,6] Coherent Optical Adap- 1
tive Techniques and Image Comnensation). The feedback signal is then used in

;. a stochastic approximation scheme in order to obtain a convergent feedback ]

% @ controller for the multidither adaptive optics. The estimator will give an %

L optimal estimate of the feedback signal in the presence of both speckle noise ?

and detector noise. The results of the techniaue are applied to an auto-

focusing scheme.
| The control is based on optimizing the intensity as a function of the

distance betwcen the secondary and primary mirrors for a Cassegrain tele-
scope. Maximization logic is based on the parameter gradients of the inten-
sity. Second order gradients arc not used in this simple maximization logic.

However, they can easily be incorporated in multi-element adaptive optic

P | systems.
L ) The worse case speckle problem has been addressed. This is the additive
1 speckle problem. In the example, a simple phase lock loop was modeled for

: | comparison purposes. An AGC compensation was not simulated as it does not

‘ add any utility to the models. It is shown that the technique in this paper
vields significant performance improvement even with ideal modeling of the
comparison loop.

Section I gives the problem statement including a discussion of the

sinusoidal perturbation adaptive controller and the basic estimation equations.
Section IT considers the problem of speckle interaction on adaptive optics [rom
the standpoint of induced signal spectrum components, and the modeling of an
estimator addressing this problem. Section 111 gives the estimator equations
in the continuous form for possible analog implementation. Section IV gives
the control philosophy in terms of stochastic approximation. Section V demon-
strates the results of applying estimation theory to the autofocusing problem

and Section VI contains the conclusion.




II. Problem Statement

The philosophy of multidither adaptive optics is to obtain a maximum of
intensity by using a feedback signal derived from multidithering. The intensity

is a function of adjustable parameters, P, where P is a q-vector, i.e.,

Io="T(P). (1)

| The parameters are perturbed from a reference value, P, by the addition of a

sinusoidal perturbation signal, i.e.,

’ c; Sin w,t \

o sin w,t
P=P+ . . (2)
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The actual intensity at the receiver will then be a function of the perturbations,

1 t 1.€.5

£ [(P) = 1(P +9) (3)

: ’.: % g where
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Fq. (o) may be expanded in a Taylor series about small amplitude perturbations
(1o [<<[[P[| where ||(+)|| denotes the Euclidean norm of the vector () ).

This yields
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L(P) = L(P) # %%r Q+ % ol %§£ Q + H.O.T, (5)

where H.0.T. denotes the higher order terms, the superscript 'T'" denotes the

vector transpose,
BI/BPl ‘
aI/an ;

and vwhere
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P; denotes the i-th clement of the parameter vector. For small perturbations
(in terms of the norm of @) the higher order terms may be dropped. A more
refined approach will be considered when the second derivative is emploved for
convergence behavior monitoring in this paper. For the purpose of this
development, however, analog filtering will be assumed to be available for
elimipating the double frequency terms as well as higher order terms. There-
fore, if the signal return were perfect, we would have as the signal after

bandpass filtering

e S e A e A i A i

i
Im = 17 + g

5p O (8)

The sign ar it magnitude of the gradient of the intensity with respect to the
adjustable parancters are contained explicitly in the term containing the
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basic dither frequencies. This yields the information necessarv to make a
correction to the adjustable parameters such that the intensity can be
increased. In particular, the new settings for the parameters may be found
by appropriately choosing the desired intensity change at the current time

and solving for the required change in the parameters by a steepest ascent
algorithm, i.e.,

. 31 1
Pnewk+1 v poldk .8 5?; (9) 4

where K > 0 at each time instant, k, and serves as an effective gain paramcter
that 1s controlled to assure reasonable convergence towards the optimum. The
predictor change in 1 may be found as

31t 3l

T
ool = s 5 ol
61 = op (Pncw pold) i (10)

This is continued until
9l . :
551l <8 &>0 (1

where § is chosen for convergence control.

The above algorithm implicitly used in multidither Adaptive Optics has
the problem of the gradient so obtained is assumed to be a determintstic
quantity and as such is determined by a noiseless measurcment. Neither of
these cases are actually realized in any application. I particular, in rcal
situations the amplitude of the gradient is amplitude modulatced hy spechle s
well as corrupted by signal like noise components, as will be showed in
Section II. Furthermore, the measurements are not noiseless. Thus, the

roturned signal from the target may be written as

X
y(1) = k(IP) + &5 0+ 5 4s,+ ... rs THe) * (1)
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where k(z) is the detector gain, z is the target range, #1/3P is the gradient
modulated at the dither frequency, S5 1s the speckle induced spectrum component
occurring at the i-th dither frequency band, T is the target diffusely distrib-
uted return, g is a random glint return component and n is the detector noise.
The speckle induced spectrum and modulation at the dither frequencies cause a
random fluctuation of the signal at each dither band.

The second order terms may be retained with some further modeling. The
intensity I(P) is assumed to be representative of the returned intensity with g
and T being zero-mean processes for the temporal variation of the glint and
di ffuse returns. In this way, the temporal spectral spreading of the returned
intensity may be modeled. That is, g and T are perturbations of the returned
intensity due to glint and diffuse changing.

Thus, the measurement equation is as given in Eq. (12). Since speckle
induced components which effect system performance appear at the dither fre-
quencies, they are indistinguishable {rom the gradient vector components and
cannot be separated out by conventional filtering techniques. lHowever, by the
usce of optimal estimation techniques, it can be discriminated as undesirable
signal components. In fact, an estimator is structured in Section III in
order to estimate the gradient, the speckle components, the glint component,
and the target diffuse component.

The structure of the estimator to be used is given without proof as it is
well known to the control and estimation community. However, the structure 1is
given for completencss. The first formulation is that of an analog implementa-
tion of the estimator. The process x, which is an n-vector, is assumed to
evolve according to the set of formal first order vector differential equa-

tions,
x(t) = fix(t)} + G(t)u(t) (13)

where u(t) is a zero mean white noise m-vector with covariance

V{u(t)u(z}w‘ = Q(t)6(t-1)

where &(-) i5 the Dirac delta function. (The authors are well aware of the Ito
interpretations as well as the general structure of the result. However, it is
formalized for the sake of the optics community.) The measurement cquation for
the process x(t) is given as




e

y(t) = h(t)rrx(t) + v(t) (14)

where y may be a vector in general but will be assumed to be a scalar since the
measurement of the process of concern is a scalar. The vector v(t) is a zero

mean white noise process with covariance
Biv(tiviz)} = £le)éle-1) .

It is assumed that u and v are uncorrelated. The approximate conditional mean

! estimator for the nonlinear system is given as

X(t) = F(t)x + K@) iy(t) - h(e)x(e)} (15)

where x 1S the approximate conditional mean cstimate,

Bit) = .g{ S (16)
S
and
D -
(o) = BOAO) a
with

P(t) = F(O)P) + POEm)?Y + soemicm ! -

(18)

P (Oh@P(O)
r(t)

The matrix P(t) is the approximate covariance matrix for the estimation error,

X - x, and the last term in Fq. (18) represents the cffect of the measurements

3 : on the differential equation for P(t). The structure is called the extended

; Kalman cotimator [2,3]. Note that the matrices F, G, Q, and r do not have to

§ be time varving. It is important to rcalize that the estimator weighs the
process dynamics and the measurements according to their statistical knowledge.
Also, as th.- number of measurements processed increases, if the estimator is

i stable, then the knowledge gained will increase. This is significant since

some of the signal processing algoritlms in use in currently configured optical
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systems lose information by not taking this fact into account. The discrete
estimation algorithm may be easily established and is not given.

The above is an elementary discussion of estimation theory. For more
details and advanced techniqqes, it is suggested that the reader use the pre-
viously cited references for more information.

It suffices to say that in order to obtain an estimator that will
optimally estimate the quantities in Eq. (12), it is necessary to obtain a
dynamic model structure as in Eqs. (13-18). Thus, dynamic statistical equa-
tions for cach term in Eq. (12) must be obtained. This is considered in the

next section.

ITT. Speckle Effects Modeling

As was indicated in the last section, it is necessary to take into account
all the statistical information available about the process to be estimated.
Part of the statistical information is derived from a priori models for the
time varying random phenomenon. This a priori statistical information is
contained in the models of the form as given in Eq. (14). Thus, in order to
use the structure appearing in the optimal estimator, we must develop models
such as these. This will be accomplished in this section for speckle inter-
active effects on the adaptive optics case in question.

We are interested in obtaining a general expression for the temporal
power spectral density (PSD) for frequency components generated by targe
return dynamic speckle. For the purposes of this development, target back-
scatter can simply be characterized as having a specular and a diffuse part.
The specular return preserves the spatial coherence of the incident illumina-
tion. It eminates from target regions which are normal to the receiver line-
of-sight and have a smooth surface texture relative to the dimensions of the
incident wavelength. The diffuse part eminate from spatially distributed
target regions within the beam illumination and are characterized by the general
surface roughness properties and target geometry. Both Goldfischer [7] and
Crane [8] develop rclationships which give the spatial PSD, S(w,Q), in terms
of the convolution of the object illumination function p(u,v). We will use
these relations, addressing the nrojected illumination function (of an other-

wise three dimensional target shape, and resulting target illuminated structure)




in the (u,v) plane, denoted p(u,v), as the source of both specular and diffuse
returns. The object shape dictated normal incident point is located in Fig. 1
at the (u,v) plane origin for convenience. The remaining distributed regions
b in p(u,v) account for the object diffuse backscatter. Employing Goldfischer's

relatively simple formulation for the Fraumhofer case, we have

-C

Or simply stated, the spatial PSD is the self convolution of the target spatial
irradiance (refer to |7] and [8] for proof). The spatially distributed ampli-

tude of p(u,v) is directly relatable to the target specular regions and the

i overall backscatter diffuse nature of the reflecting surface. The latter is
generally characterized by the fall off of backscattered intensity as a
function of incidence angle. The results are a combined cffect of the target
surface scattering properties and target illuminated shape. Surface scattering
can be measured in the laboratorv as Mono-Directional or Bi-Directional
Reflectance data (MR or BDR) for flatplate samples of the target surface
material, giving scattering behavior which is f{ree of shape effects (no
geometrical effects). This point is made to emphasize that the formulation

of p{u,v) must contain the full phenomenon of surface and shape scattering for

any particular object given a specified illumination function on that object.

.

E

Ihis is a formidable task from an analvtical approach for complex target

structures, but reasonably performed via computer target shape decomposition

3 uias
R

techniques where laboratory BDR data can be used directly for scattering

hT - ‘.’U"‘\f';‘" A

calculations. The following discussion of shape responsive spatial PSD uses

T —
AN T -

Ty

this object shape decomposition approach. This involves separating a complex

structured target into its fundamental geometrical shapes, identifying the

.

s "H"“\

g

projected silhouette of each shape onto the (u,v) plane, weighting this
£ projection by the beam illumination outline, and noting normal incident
'_% point = {veterenced us the source of target scattered glints) locations on
cach beam weighted shape silhouctte.
The mechanics of the computer shape decomposition approach for spatial

PSD calculactions, simmly utilize the above stated relationship of p(u,v) and




Stw,R) by performing the self convolution and the cross correlation of each
beam weighted shape silhouette with itself and with all other illuminated
shapes. An important consideration which must be given in the case of adaptive
optics is the effective differing target illumnation functions which occur in
adaptive beam forming control versus the total illumination which is sensitive
to the adaptive convergence condition at any instant of time. For the multi-
dither example considered here with separate (segmented) adaptive subapcrtures
{(a multidither zonal implementation caseB, two illuminating functions must be
considered. These are the target illumination patterns associated with each
subaperture dithered channel, driven at some dither frequency w; for a = 1,

« dither channels, and the coherent adaptive control summed illumination
which results, at the target and is sensitive to the adaptively controlled
Instantaneous convergence state.

Considering the coherently summed illumination pattern first, the
resulting illwmination weighted target shape silhouctte are checked for normal
incidence points (target glints and specular sources). The self convolution
of a glint (having a (u,v) planc spatially infinitesimal value) yields a
highly peaked but very low spatial frequency band contribution to the PSD, as
shown in Fig. 2. The self convolution of shape silhouettes (being spatially
extended in the (u,v) plane) is lower in magnitude but more extensively spread
in the frequency domain as shown. The cut off of this spread is inversel)
re lated to the longest dimension of the (u,v) plane projection of the target
silhouette. The cross correlation of the dither subaperture illumination with
the resultant summed illumination is in general spatially broader than the
sclf convolved summed illumination but much lower in peak amplitude due to the
miltidither inplementation approaches which modulates a very small fraction of
the total beam power at each dither frequency. This modulation is typically
less than 10%, and is usually in the order of 2 to 3%. With reference to
the log scale employed in Fig. 2, the cross-correlation terms will be
typically 15 to 17 db below the glint contributing terms.

As stated earlier. what is needed is the temporal PSD. Since speckle
motion is by relative target-beam motion, the spatial PSD will be temporally
modulated by any target or beam dynamics. This can be as complicated as
beam apparert motion occurring during adaptive control (adaptive search and

lock-up dynamics for a glint point or a designated target location), or a
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simply dictated by target spin or apparent angular rate due to flight dvnamics.
[f motion effects are simply associated with an effective target rotatior, i,
then the temporal PSD can be simply derived from the spatial PSD by multiplying
the self-convolution components by 26h. The cross-correlation terms arce modu
lated by the dither carrier frequencies, f;, and the effective 0 which
generates a frequency spread in the temporal PSD components related to the
miltidither subaperature contributions. The resulting temporal PSD is what

is displayed in Fig. 2. Only a point receiver case is chosen. For any
specific system configuration, the PSD must be further weighted by the

spatial transfer function associated with the receiver diameter. This

will result in a reduced spectrum content in the speckle induced PSD and

modi fication of certain frequency component peaks. However, in order to
address the worse casc condition and to choose a general formulation, a point
receiver is more appropriately modeled here. In this modeling case, the
important terms are the various spectral peaks associated with the glint,
diffuse, and cross correlated dither signal like noise contributing terms.
[hesc are shown in Fig. 2.

Thus, Fig. 2 illustrates the temporal power spectrum found. The temporal
spectrum may now be used to find the necessary state models as in lq. (13).
The procedure is to find an analvtical and rational expression for the temporal ;
PSD and then to use the well known expression

5

() = [H(jn-)!‘S (w) (20(1)

S
Yy Wi

relating the required PSD (S,,,) to a linear shaping filter (H(jw)) driven by
unity variance white noise. “The realization of H(jw) will give us the required
differential equations.

The PSD for each of the speckle processes are now presented. For the

glint, it is ussumed that the PSD is

B0y
S‘L’g(“') = {—07 e B-;l ’\~—]‘

where 2(7";/3}: is the zero frequency amplutide ol the glint and B‘g 1s the

correlation constant (caual to the inverse of the correlation time). The

11
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correlation time is assumed large. This gives a low frequency cut off for the
model as the physics depicts. A similar model may he deduced for the diffusc

induced component. ‘This yields

2800
Rl o -
S.]VI‘(!U) s (-‘Fv' T+ R . (...,i

3 'rl-

The dither correlated components require a different model. These models are

of the form for each dither frequency

o
3 |

where Bi, L= L g rarne o the order of EQ, w; 5 L=l it q are ‘the
dither frequencies, and ”i;’ BETH SR e are amplitude scaling parameters.
These may be obtained as an approximation to the actual PSP curves found [rom
Figure 2. Thev arc adequate rational anphroximants to the actual PSDs.  Us~ of
fg. (20) and spectral factorization yields the following differential equations

for the models, 1i.e.,

5 i T
¢ B8 + J:“u 0.4,
| = T+ /28, 0 Un (24
1 e :
Sj =g e 9
i
and
\'i = “i\'i - hi'Si *o.u, Ei= Sl Ly O
whore o, Uy and g i=1, «.., q avre zero mean white noisc with unit :
. |
variance and wncorrelated with cach other. |
'
_ s o N : : . 1
Ihe cootficients may be determined through physical knowlcdge, exporinen: (ol i

data, or by on-line use of adaptive estimation theory. The use of this technigee

will yield the optimal estimator. The coefficients may be learned as the adap-

tive optics system is utilized.
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Thus, equations (21-24) yield the temporally varying statistical informa-
tion about the speckle process in a form suitable for inclusion into the
optimal estimator. The next section discusses the remaining models necessary

for the estimator and develops the estimator equations for implementation.

ITT. Estimation Fquations

The basic problem that is to be addressed is that of estimating the
gradient sector 3I/5P as this is the signal necessary to adjust the parameters.
This section develops the remaining models necessary to accomplish this estima-
tion as well as the estimation ofs the speckle components, and develops both
the continuous estimator and the discrete estimator {or this class of problens.

The remaining models nccessary for the estimator structure are temporal

models for 1(P) and 31/3P. From equation (10) it may be noted that

G 51 ap

D

dt A3

which gives the necessary dyvnamic equation for I. 1If in Eq. (9) the parameter

may be written as

r:k = _k/\t

then 2 limiting process yields that

= £y, (26)
dt k BPk
and Eq. (32) may be written as
dL_ - a1l al (27)
dt Sk g

There are scveral methods that may be used to model the dynamic change in the

gradient. It may be noted that since the second partials are modulated into

13
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the signal (Eq. (5)), appronriate processing will yield the matrix 921/9P°.
Then

d ok %5 4B
a (o8 ™ 0% % (28}

or, using Eq. (33)

d (8l SO ol
it ()= % e () a2

Since the matrix 3%1/5P? cannot be extracted noiselessly, process noise must be
added to this equation in order to assure the proper uncertainty level in this

equation. This yields

l‘r{f(%—l[))ﬂ?k%;(ﬂ%w (30)

oP
where w is assumed to be white noise, zero mean with variance

Ei(Ow! (1)) = Q (1)8(t-1)

Now, another dynamic model for short term modeling for the dynamic change in

the cradient may be

-‘.j{(%_‘l‘.)z-v (31}
where each element of v is a process
\ = 'I’"\"ivi + 2@\;{ ()iuvi, TR B S o) (32)

1

with initial condition




where u,, 1s zero mean unity variance white noise. The correlation time is
chosen on the order of the expected convergence time. The initial condition
is chosen to represent the negative change in the gradient for a convergent
process. The choice of correlation time as suggested will vield a model that
gives a decay of the gradient from some positive value to a fluctuation about
zero caused by the process noise. This model for short time intervals allows
for a dynamically varyving gradient vector. This effect will be studied in
more detail when the cstimator has been developed.

bgs. (28-32) yield the necessary dynamic models for the estimator. It
may bc noted that this system of differential equations may be placed into the
form of Iiq. (13) where the state vector x is

The measurement equation may be written in the form of li.
[C1im)
V.1

y(t) = k(241,87 ,1,1,...,1,0,0,1,1}

where s is the vector consisting ol the clements Sy

A Sq and %, 15 the
Yector conSIsEIng o fthe elenents X, ) 0 it o, Xat,

2 % “q
The structure as given in Lgs. 24-32 may be applied to Iu.

the estimator

1

{15) to yield
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with the element Py heing the covariance of the estimation

diagonals P‘,[ being the covariance of the estimation crror

forth.

row vector b in Eq. (17

) T
Epl g T
o
X,
-0 & 28 ."":
le:, 05
1
—Ez.\' = m?;\'Z
+ K{
3 22
' 9 = B S
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and ) equal to a 2g + 2 identity matrix. It may be noted that of/dx is a
| sparse matrix. This fact may be tsed to eliminate many of the interconnections
4 and, thus, simplify the equations.
! This structure will vield the estimate of the physical variables to be
' estimated. ihigher order approximations to the conditional mean may be obtained
' as well as the partial integral cquation of the conditional probability
g | density function. However, the complexity of the structure is not worth the
: additional eftort. ‘Thus, the above yields the extended Kalman estimator. The

next sectioi considers a control philosophy.

;‘ IV. Control Philosophy
it The problem is to maximize the intensity at the far field by adjustment
i of the pertinent system parameters. These parameters may include phase biases
E in segmented mirrors or a deformable mirror and the focal length of a tele-
scope among other parameters. ‘The intensity is a stochastic process due to

; perturbations of this phenomena. The rerformance index J is given as

J(P) = max E{I(p)! (40)
3 P<@
i
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| where @ is 4 constraint set for P and E{-} denotes the expected value over all

realizations. The condition for optimization is that the stochastic gradient
must be equal to zero, i.e.,

kit

15 {‘.’p]} =0 (41)

! where interchange of expectation and differentiation has occurred. The estima-
. tion algorithm yields a best estimate of this stochastic gradient. Thus, the

i algorithm to adjust the parameters in order to accomplish the hill climbing

} : to reach the stationary point as depicted in Eq. (9) is

P, . =P +g 71 (12)

¥ Lo . Sy o, E . ¢ 1 < \Ev‘ ¥ee
where £ 18 a given sequence {,!’,?,,,_, K? kejee) tO be chosen and I’l 18

| the estimator estimate for ‘-.'pl.
The gain sequence, o Must be chosen to assume convergence of the algorithm.
Furthermore, it is desirable that the convergence by accelerated. The method-
ology for choosing the gain sequence comes from stochastic approximation [9].
(This is not an exhaustive bibliography. See [10| for a more complete biblio-
graphy.) This paper is not intended to survey all existing stochastic approxi-
mation methods. lowever, it is sufficient to point out that the gain sequence
E need not be caceedingly complex. For example, if the stochustic gradient

. ¥ EfLP) [P, where it ic conditioned on P, is such that

INE [ (P-10) ]! ECL(PY[PY] = 0, ¥ =0 (13)

Oy - 1

e<||p-P"| | <

TR TEWTE ST e v

and if the estimated gradient is such that

- P 2
ECHOSETY < het|{P-2211T), >0 (44)

where P i< the value of the paramcters maximizing the intensity, then the

sequence of gains that satisfy
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will yield an algorithm convergent in mean square and with probability one,
T D

5 { 1im e, 0 '
Prob a . B = B =L (46)

The use of accelcrated convergence methods can be easily formulated from

existing control literature. The philosophy of using stochastic approximation

was given in this section. ‘the next section considers the use of the estimator
for the autofocus problem.

V. Lstination in Autofocusing

An active autofocusing scheme has been described in reference |11].
Basically this scheme consists of adapting the focal length by sinusoidally
perturbing the distance between the secondary mirror and the primary mirror of
a Cassegrain telescope. 'This adjustment continues until the intensity is
maxinmized. ‘The scheme in [{11] can be classified as a sinusoidal perturbation
adaptive controller as previously derived in this paper. This section gives
the results ot application of the estimation to this problem.

The measurement cquation can be functionally written as

— gk,
o e ol SN L .
) k(z){I(d) + 54 Sin L.;dt

C

+S(]+T+‘L‘f+" (47)

where ! is the distance between the primary and secondary mirror (see Fig. 3).

The models are as given previously for the speckle return, intensity, and
8 ] . p )
gradient.
The sumulations werc conducted by using we11 known analytical expressions

for the intensity of a focuscd, aperatured Gaussian laser. Thus, the intensity

20
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at d was calcuiated by use of the analytical expression tor 1 in reference |12}

and the expression relating the focal length to d. An analvtical expression
for 51/5d may be obtained from

ke 48)
3d (48

where 391/53f may be explicitly calculated from reference [12] and 3f/3d mav be
2asily determined. The speckle noise was simulated using the shaping filter
model as in equation (24) with appropriate white driving noise. These are
used to form the measurements in the simulations. The estimator is then used
to determine the best estimates for the gradient and speckle. The square
roots ot the diagonal elements ot the covariance matrix gives the measure of
the standard deviation of the estimation error. These are plotted in Figures
6. In addition, 200 Monte Carlo runs were conducted to ascertain the effects

ot the nonlinearities in the system dvnamics. See Figurc 4. Figure 7 yields
thie center value of the separation distance between the primary and secondary
MIrrors.

The modeling approach is thus based on Eq. (12), where k(z) is an effective
range and target scattering dependent intensity scaling factor, 1(P), is based
on the autofocus case discussed in Ref. [12], and speckle induced factors, S g
T and g are derived for the target range and dynamics associated with that
example. The inclusion of the speckle related interactive eftects has not
been considered earlier, and allows the autofocus cxample to be more realistic
in terms of a practical implementation example.

The phy-ical variables used in the simulations were

Iy T 1.1 KM
.= 800 M
fx (
r. = 0.4 M (secondary radius of curvature)
< :
r_ = 1.98 M (nrimary radius of curvature)

d\ = 0.7912 M (mirrer spacing)
d = 0.02 M (dither length)
f, = 1K Hz (dither focus rate)

oy = 2rfd = 2000
U

a = 0.0589 M

b = 0.299 M

1 = N A M

2/




| ¢y = target apparent brightness width
f, =1M
! éT = 10 mr/s » 100 mr/s
2 apparent angular rotation rate
: g = 5 Hz
g
; Bp = 30 Hz
‘* _ Bd = §5 Hz
§ s 5K Hz
E ‘78, il 10
‘ o = 100
E | d
] 1 dJ = ()nl
~ \7

The variance due to speckle (gq) at dither carriers is large due to changes in
apparent rotation and apparent aspect angle changes with flight. The large
magnitude for By indicates little temporal correlation from update to update
for the correction loop. The estimator update rate was 4K Hz while the dither

focus was driven at fd = 1K Hz.

[t is assumed that the estinator uses a range-dopplev tracker for handover

giving a value of range and a value of the rotation rate as

5]

® \dopplor X/"ll\l

vhere

; YIN - fx {2.44 2/2b]

and fV may be calculated from

i
. , | 1
P 1- 21y (f -'F_)
| o ) LT R LIRS T
/ - S £y
' LT
p

The nroblem of an wcertain rotation rate will not be treated here. It
suffices to <4y that adaptive estimation techniques may be used to adapt upon
this variable.
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Returning now to the estimator equations, it can be noted that in order
to estimate g, ' and s, information must be available of the target apparent
angular motion, 9, and brightness length, b The latter can be derived from
the previous consideration. Focus estimation can be determined from the
dither focus control servo (values of f(do) which optimize 1(z,f). Angular
rotes can be derived from either a doppler measurement, or speckle induced
frequency components at the sensor. The autofocus simulation assumed that
initial handoff is from a range-doppler tracker, providing zN(o), GN(Q},
fN(OJ which are used to start the estimator. The complete description of the
estimator then becomes

il s S Tl
1({) ‘k/pl ;PI I(p)
V1 2y g
2 p
S %5 S
i; -ﬁdiy-ulyg o y—K(:][I,gl,l,U,U,l,l] X

(Y
i A_f \
( \
I Vrl |
o 3 Q g
Sl 2o et e

The pertormance was compared with a simple (nearly ideal phasce locl

Loop.

Vl. Conclusions

This paper gencralizes the multidither adaptive optics concepts by
showing that they belong to the class of sinusoidal perturbation adaptive
control problems. This analysis vields insight into the higher order fre-
quency terms as these can be easily seen to he related to the second deriva-
tive - of the intensity. fhis signal is corrupted by speckle cffects as well
as Jdetector noise.  The speckle components are modeled in state space foimed
by the use ot the temporal power spectral density derived in this paper. The

models are then used to form an extended kalman estimator to estimate the




A oo

gradient vector. This separates the gradient from the speckle components.
The estinator may be used 1 a high bandwidth digital signal processor
similar to digital radar processors in order to estimate the required quoanti

ties. It may be also used in an analog realization. This may lead to an

elimination of conventional electronics to accomplish the necessary detection
while eliminating the speckle noise from the measurement. [his yvields u
control variable that is less noisy and, thus, better for fteedback purposes.
The control philosophy using stochastic approximation is briclly discussed.
[his yields an excellent convergent algorithm. The estimation algorithms
were applied to the autofocus system. Stable convergence occurred in the
presence of speckle induced competing signals. A similar case was tested

with no estimation cmployed, leading, in general, to poor convergence lor

Monte Carlo simulated runs.
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